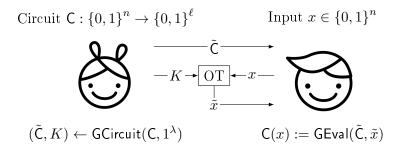
ON TREEWIDTH, SEPARATORS AND YAO'S GARBLING

Chethan Kamath Karen Klein Krzysztof Pietrzak

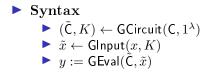
Institute of Science and Technology

TCC 2021, Raleigh, US

► **Theorem.** For Boolean circuits of size S and *treewidth* w = w(S), Yao's garbling Γ is *adaptively-indistinguishable* with a loss in security $S^{O(w)}$.

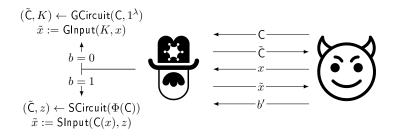

Remarks:

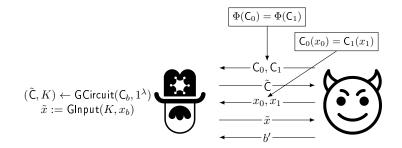
- 1. Applebaum et al. [AIKW13] ruled out adaptive-simulatability of Γ
- 2. Jafargholi-Wichs [JW16] proved adaptive-simulatability of Γ' , a *variant* of Γ
- 3. We can prove adaptive-simulatability of Γ' in terms of treewidth


GARBLING

Security Models Yao's Garbling

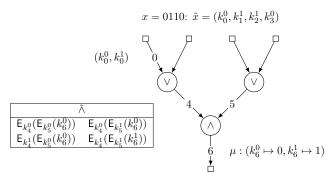
OUR REDUCTION


GARBLING [BHR12]


Correctness
$$\forall \lambda, \forall \mathsf{C}, \forall x$$
:

$$\Pr_{\substack{(\tilde{\mathsf{C}},K)\leftarrow\mathsf{GCircuit}(\mathsf{C},1^{\lambda})\\\tilde{x}\leftarrow\mathsf{GInput}(x,K)}} \left[\mathsf{GEval}(\tilde{\mathsf{C}},\tilde{x}) = \mathsf{C}(x)\right] = 1$$

SECURITY: ADAPTIVE SIMULATABILITY



Security: Adaptive Indistinguishability

Adaptive Simulatability => Adaptive Indistinguishability
 Application: restricted symmetric-key FE [JSW17]

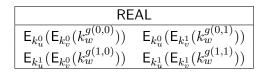
Yao's Garbling Γ

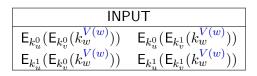
- ▶ Each wire in $w \in \mathsf{C}$ associated with secret keys (k_w^0, k_w^1)
- ► Garbled circuit, $\tilde{\mathsf{C}} := ({\{\tilde{g}\}}_{g \in \mathsf{C}}, \mu)$
 - Garbling table: \tilde{g} for each gate $g \in \mathsf{C}$
 - Output map, μ : (k_w^0, k_w^1) of each o/p wire w mapped to bit
- Garbled i/p, \tilde{x} : keys of the i/p wires *selected* using x
- ▶ Evaluate: evaluate C "over the encryption"

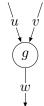
Yao's Garbling Γ ...

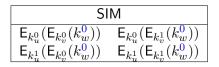
- Γ : Online-complexity depends only on |x| = n (and security parameter)
- ▶ Variant Γ' : o/p map μ sent in *online* phase
 - Garbled circuit: $\tilde{\mathsf{C}} := {\tilde{g}}_{g \in \mathsf{C}}$:
 - Garbled i/p: (\tilde{x}, μ)

 \blacktriangleright Online complexity depends also on the o/p length ℓ

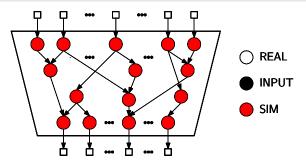

E.g.: garbling of a PRG C: {0,1}ⁿ → {0,1}^{n^c}
Online complexity using Γ' is ≈ n^c
Cannot be adaptively simulatable using Γ


YAO'S GARBLING: SECURITY LANDSCAPE


	Selective		Adaptive	
	Γ	Γ'	Г	Γ'
Simulatability	[LP09]		[AIKW13]	[JW16]
Indistinguishability			This work	


Our Reduction

GARBLING MODES



V(w): value of the wire when evaluating C(x)
 Indistinguishability game: REAL₀/REAL₁, INPUT₀/INPUT₁

SELECTIVE SIMULATABILITY [LP09]

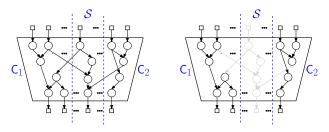
Hybrid argument

- 1. Replace REAL with INPUT in topological order
 - ▶ Indistinguishable by ciphertext indistinguishability of SKE
- 2. Replace INPUT with SIM in *reverse* topological order:
 - Indistinguishable information-theoretically

Programming

- 1. Program o/p map μ so that keys of output wires correctly map to $\mathsf{C}(x)$
- Implies adaptive simulatability with additional 2^n loss

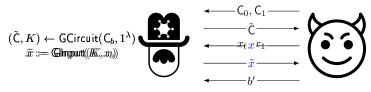
HURDLES TO ADAPTIVE INDISTINGUISHABILITY


- 1. Problem: Input x only available in online phase
 - 1.1 Problem: Cannot program μ in the offline phase
 - ► [JW16] solution: Send μ in *online* phase (i.e., Γ'), *defer* programming
 - Our solution: Avoid SIM mode in the hybrids
 - 1.2 **Problem**: How to simulate INPUT?
 - ▶ [JW16] solution: Minimise #INPUT gates and guess their values!
- 2. Problem: How to minimise #INPUT?
 - ▶ [JW16] solution: Restrict circuit classes, e.g., low-depth circuits
 - ▶ Our solution: *Divide and conquer* via treewidth/separator

TREEWIDTH/SEPARATOR

▶ **Treewidth**. Measure of how 'far' a circuit (DAG) is from a formula (tree)

▶ E.g., Boolean formulae have treewidth 1

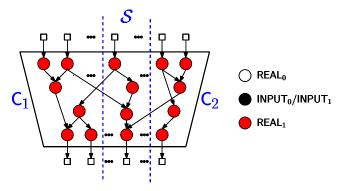

Separator. A sub-set of gates S of a circuit C such that removing S (and its incident wires) from C results in disconnected sub-circuits of size at most 2/3|C|

▶ Treewidth-Separator Theorem [RS86]. Any circuit of size S with treewidth w = w(S) has a separator of size w.

SECURITY: ADAPTIVE INDISTINGUISHABILITY

 $\blacktriangleright\,$ Simpler indistinguishability game with single i/p

▶ Garbling modes: $\mathsf{REAL}_0/\mathsf{REAL}_1$, $\mathsf{INPUT}_0/\mathsf{INPUT}_1$


- **Coal**: Switch all garbling tables from REAL_0 to REAL_1
- **Constraint**: Minimise $\#INPUT_0/INPUT_1$ garbling tables
- ▶ Idea: Maintain $\mathsf{INPUT}_0/\mathsf{INPUT}_1$ gates *only* "at" separator
 - Property of separator \implies can *recurse* on components
 - Small separator \implies few INPUT₀/INPUT₁ gates

OUR REDUCTION...

▶ Recursive structure of hybrids:

- ▶ Switch gates "on" separator S to $\mathsf{INPUT}_0/\mathsf{INPUT}_1$
- *Recursively* switch C_1 , C_2 from $REAL_0$ to $REAL_1$

 \blacktriangleright Switch gates on separator to REAL_1

► #INPUT₀/INPUT₁ $\approx |S|\delta \log(S), \delta$ is the degree

Our Reduction...

▶ Abstracted out, formalised using a pebble game

- Lemma 1. Hybrids corresponding to neighbouring pebble configurations are indistinguishable.
 - Based on ciphertext indistinguishability of SKE or information-theoretically
- Lemma 2. There exists a pebble strategy which uses $w\delta \log(S)$ black/gray pebbles.
- **Theorem.** For Boolean circuits of size S and *treewidth* w = w(S), Yao's garbling Γ is *adaptively-indistinguishable* with a loss in security $S^{O(w)}$.
 - ▶ Using piecewise-guessing framework [JKK+17]

Thank you!

References

- AIKW13 Applebaum, Ishai, Kushilevitz and Waters Encoding Functions with Constant Online Rate, or How to Compress Garbling Keys, Crypto 2013
 - BHR12 Bellare, Hoang and Rogaway, Foundations of Garbled Circuits, CCS 2012
- JKK+17 Jafargholi, Kamath, Klein, Komargodski, Pietrzak and Wichs, *Be Adaptive, Avoid Overcommitting*, Crypto 2017
 - JSW17 Jafargholi, Scafuro and Wichs, Adaptively Indistinguishable Garbled Circuits, TCC 2017
 - JW16 Jafargholi and Wichs, Adaptive Security of Yao's Garbled Circuits, TCC 2016
 - LP09 Lindell and Pinkas, A Proof of Security of Yao's Protocol for Two-Party Computation, J. Cryptography 2009
 - RS86 Robertson and Seymour, Graph Minors II, J. Algorithms 1986

- ▶ Ipe Software
- ► OBS Project
- ▶ The Noun Project
 - 1. Sheriff by Oksana Latysheva
 - 2. Man, Girl by Zuzanna Nebes
 - 3. Devil by Alina Oleynik